
Solutions - Resit (Group B) January 28 2021

1. Let S17 be the permutation group on {1,2,3, . . . ,17} and let σ = (2 5 3 6)(11 3 6 5 7)(7 11 5 8 3)(1 4) ∈
S17.

(a) [1 point] Write σ as a product of 2-cycles.

Solution: One can write

σ = (2 5)(5 3)(3 6)(11 3)(3 6)(6 5)(5 7)(7 11)(11 5)(5 8)(8 3)(1 4).

Any correct answer is 1 point.

(b) [2 points] Write the inverse of σ as a product of disjoint cycles.

Solution: We write this permutation as a product of disjoint cycles:

σ = (3 11 7 6)(8 2 5)(1 4).

Since disjoint cycles commute the inverse of σ is the product of the inverses of the cycles:

σ−1 = (6 7 11 3)(8 5 2)(1 4).

Writing as a product of disjoint cycles is 1 point; finding the inverse is 1 point.

(c) [2 points] Compute the kernel of the homomorphism

ϕ ∶ Z→ S17

k ↦ σk.

Solution: By definition
ker(ϕ) = {k ∈ Z ∶ σk

= (1)}.

This implies that ord(σ) = lcm(4,3,2) = 12 divides k. Therefore we have ker(ϕ) = 12Z.
Arguing that ord(σ) ∣ k is 0.5 points, computing lcm(4,3,2) = 12 0.5 points and
concluding ker(ϕ) = 12Z is 1 point.

(d) [2 points] Find a subgroup of S17 containing σ and isomorphic to Z/3Z ×Z/4Z ×Z/5Z.

Solution: By CRT, we have Z/3Z × Z/4Z × Z/5Z ≅ Z/60Z. So we need to find a cyclic
subgroup of order 60 which contains σ. The cyclic group generated by

τ = (3 11 7 6)(8 2 5)(1 4)(2 9 12 13 14)

contains σ since τ25 = σ. Moreover, since lcm(4,3,2,5) = 60, this subgroup consists of 60
elements.
If they figure out that the group should be generated by τ and a 5-cycle then
1 points, and if they choose a correct 5-cycle (i.e., a disjoint one) then it is 2
points. They should also argue why these permutations generate a group isom.
to Z/3Z ×Z/4Z ×Z/5Z (if they don’t then deduct 0.5 points).



2. Consider the group

G = {[
x y
z t

] ∶ x, y, z, t ∈ Z/5Z, xt − zy ≠ 0}

with respect to matrix multiplication. Let

H = {[
1 0
b a

] ∶ a, b ∈ Z/5Z, a ≠ 0} .

(Recall that (Z/pZ)×, where p is a prime, is a group with respect to multiplication.)

(a) [3 points] Show that H is a subgroup of G but not a normal subgroup.

Solution: Since a ≠ 0 we have a ⋅ 1 − 0 ⋅ b ≠ 0, so H ⊂ G. [0.5 points]

– [0.5 points] [
1 0
0 1

] ∈H;

– [0.5 points] For every [
1 0
b a

] , [
1 0
d c

] ∈ G we have

[
1 0
b a

] [
1 0
d c

] = [
1 0

b + ad ac
] ∈ G.

– [0.5 points] For every [
1 0
b a

] ∈ G the matrix [
1 0

−ba−1 a−1
] ∈ G (as a ≠ 0 and every non

zero element in Z/5Z is invertible) such that

[
1 0
b a

] [
1 0

−ba−1 a−1
] = [

1 0
0 1

]

So H is a subgroup of G. By definition H is normal iff ghg−1 ∈H for all g ∈ G and h ∈H so
to show that H is not normal it suffices to find g ∈ G and h ∈H such that ghg−1 ∉H. Let

g = [
1 1
0 1

] ∈ G and h = [
1 0
1 1

] ∈H.

Then we get

ghg−1 = [
2 1
1 1

] ∉H.

[1 point]

(b) [5 points] Find the Sylow p-groups in H. Which ones are normal in H?

Solution: Since a, b ∈ Z/5Z and a ≠ 0 we have ∣H ∣ = 20 = 22 ⋅ 5. The possible Sylow p-
subgroups are Sylow 2-groups of order 4 and Sylow 5-groups of order 5. We first determine
n2 and n5. By Sylow theory we have

n2 ∣ 5 and n2 ≡ 1 mod 2

n5 ∣ 4 and n5 ≡ 1 mod 5.

Therefore we get n2 = 1 or 5 and n5 = 1. So there is only one Sylow 5-group, denote it by
P5. Since ∣P5∣ = 5, it is cyclic so we need to find an element in H of order 5. We determine
a, b ∈ Z/5Z such that

[
1 0
b a

]

5

= [
1 0

a4b + a3b + a2b + ab + b a5
] = [

1 0
0 1

] .

So one can take a = 1, and b = 1. So P5 = ⟨[
1 0
1 1

]⟩.



We will now determine the Sylow 2-groups. Let P2 be a Sylow 2-group. Since ∣P2∣ = 4, we
have

P2 ≅ Z/4Z or Z/2Z ×Z/2Z.

We have

[
a b
0 1

]

4

= [
1 0

a3b + a2b + ab + b a4
] = [

1 0
0 1

] .

Therefore, an element has order 4 iff a4 = 1 mod 5 , a2 ≠ 1 mod 5 and a3b + a2b + ab + b = 0
mod 5 iff (a, b) ∈ {(2,0), (2,1), (2,2), (2,3), (2,4)}. Therefore there are 5 Sylow 2-groups
and they are isomorphic to Z/4Z, which are

⟨[
1 0
0 2

]⟩ , ⟨[
1 0
1 2

]⟩ , ⟨[
1 0
2 2

]⟩ , ⟨[
1 0
3 2

]⟩ , ⟨[
1 0
4 2

]⟩ .

Computing n2 and n5 is 1 point; writing the Sylow 5-group is 1 point; showing
that the Sylow 2-group is isomorphic to Z/4Z is 1 point; writing the Sylow 2-
groups is 1 point; determining the normal ones correctly is 1 point.

(c) [3 points] The group H acts on Z/5Z ×Z/5Z via the rule

(h, [
x
y
]) ↦ h [

x
y
] .

Is this action faithful; transitive; or fixed point free? Explain.

Solution:

– [1 point] The action is faithful: Let [
1 0
b a

] ≠ [
1 0
d c

] be arbitrary elements in H. Then

we have

[
x

bx + ay
] ≠ [

x
dx + cy

] ⇐⇒ bx + ay ≠ dx + cy mod 5 ⇐⇒ (b − d)x ≠ (a − c)y mod 5.

If b ≠ d, one can take [
x
y
] = [

1
0
] and if a ≠ c, one can take [

x
y
] = [

0
1
]. This proves that

the action is faithful.

– [1 point] The action is not transitive: take [
x
y
] = [

0
1
] then

H ⋅ [
0
1
] = {[

0
a
] ∶ a ∈ Z/5Z} ≠ Z/5Z ×Z/5Z.

– [1 point] The action is not fixed point free since it fixes [
0
0
].

(d) Write Z/5Z ×Z/5Z as a union of disjoint orbits of the action in (c).

Solution: We have

Z/5Z ×Z/5Z =H [
0
0
] ∪H [

0
0
] ∪H [

1
0
] ∪H [

2
0
] ∪H [

3
0
] ∪H [

4
0
] .

Complete answer is 2 points and any reasonable attempt with a mistake 1 or
1.5 points depending on the mistake.

3. Let G be a group with precisely one non-trivial proper normal subgroup N . Suppose ∣N ∣ = 3.

(a) [2 points] If f ∶ G → Z/16Z is a surjective homomorphism, what are the possible orders for
the group G?



Solution: By the homomorphism theorem, we have

G/ker(f) ≅ Z/16Z

Since ker(f) is a normal subgroup in G, we have ker(f) = {1},N or G. [0.5 points]
Suppose ker(f) = {1}. Then by the homomorphism theorem we have ∣G∣ = 16 on the other
hand we have 3 ∣ ∣G∣. So we get a contradiction. [0.5 points] Since f is a surjective map,
the kernel cannot be G. [0.5 points]
Therefore, we have ker(f) = N and hence we get ∣G∣/∣N ∣ = 16 by the homomorphism theorem.
So ∣G∣ = 48. [0.5 points]

(b) [2 points] Show that there is no injective homomorphism from G to Z/16Z.

Solution: If there is an injective homomorphism, then the kernel is trivial. Hence the ∣G∣ ∣ 16.
This is impossible since 3 ∣ ∣G∣.
Correct answer is 2 points.

4. (a) [4 points] List all non-isomorphic abelian groups of order between 60 and 97 (both bounds
are included) with at least two elementary divisors.

Solution: We first list all abelian non-isomorphic groups with two elementary divisors, in
other words, we will list abelian groups in the form Z/aZ×Z/abZ. [0.5 points] These abelian
groups have order a2b for positive integers a, b. So we list (a, b) ∈ Z ×Z with 60 ≤ a2b ≤ 97:

{(2, b) ∶ 15 ≤ b ≤ 24}

{(3, b) ∶ 7 ≤ b ≤ 10}

{(4, b) ∶ 4 ≤ b ≤ 6}

{(5,3)}

{(8,1), (9,1)}.

Complete list is 2 points, deduct points (proportionally) if the list is not com-
plete.
Now assume that there are 3 elementary divisors, i.e, abelian groups are isomorphic to
Z/aZ × Z/abZ × Z/abcZ so the cardinality of such groups are in the form a3b2c for some
positive integers a, b, c. [0.5 points] Then we get

Z/2Z ×Z/4Z ×Z/8Z
Z/2Z ×Z/4Z ×Z/12Z.

Same here, each group gives 0.25 points. (0.5 points in total)
If the number of divisors is larger than 3 then there are at least 4 positive integers a, b, c, d.
Similarly, we get 60 ≤ a4b3c2d ≤ 97. When b = c = d = 1, we get the case Z/aZ×Z/aZ×Z/aZ×
Z/aZ with a = 3. If any of b, c, d is greater than 1, there are no integers in the range. So we
conclude that the list above is the complete list. [0.5 points]

(b) [3 points] Find the elementary divisors of the multiplicative group (Z/88Z)× × (Z/63Z)×.



Solution: By the CRT (Theorem II.3.4.) we have

(Z/88Z)
×
× (Z/63Z)

×
≅ (Z/8Z)

×
× (Z/11Z)

×
× (Z/7Z)

×
× (Z/9Z)

×.

[0.5 points]
We have (Z/8Z)× = {1̄, 3̄, 5̄, 7̄} and since every non identity element in this abelian group
has order 2 we have

(Z/8Z)
×
≅ Z/2Z ×Z/2Z.

[0.5 points]
We have (Z/9Z)× = {1̄, 2̄, 4̄, 5̄, 7̄, 8̄} and since the cardinality of this abelian group is 6 we
have

(Z/9Z)
×
≅ Z/6Z.

[0.5 points]
The cardinality of (Z/11Z)× is 10 and since it is an abelian group, it is isomorphic to Z/10Z.
Similarly, the group (Z/7Z)× is isomorphic to Z/6Z. [0.5 points] So we have

(Z/88Z)
×
× (Z/63Z)

×
≅ (Z/8Z)

×
× (Z/11Z)

×
× (Z/7Z)

×
× (Z/9Z)

×

≅ Z/2Z ×Z/2Z ×Z/10Z ×Z/6Z ×Z/6Z
≅ Z/2Z ×Z/2Z ×Z/10Z ×Z/3Z ×Z/2Z ×Z/6Z
≅ Z/2Z ×Z/2Z ×Z/2Z ×Z/6Z ×Z/30Z.

So the elementary divisors are 2,2,2,6,30.[1 point]
If they immediately use (Z/pZ)× ≅ Z/(p− 1)Z then don’t deduct any points. They
should show the other two cases.

5. True/False. Prove the following statements if they are correct and disprove if they are wrong.

(a) [2 points] The group G = S6×D5 contains a normal subgroup H such that G/H is isomorphic
to Z/7Z.

Solution: False. Assume that there is a normal subgroup H in G. Since ∣G∣ = 25 ⋅ 32 ⋅ 52, we
have

7 = ∣G/H ∣ =
∣G∣

∣H ∣
∈ {k ∶ k ∣ 25 ⋅ 32 ⋅ 52}.

Since 7 does not divide ∣G∣, there cannot be a normal subgroup H such that G/H is isomor-
phic to Z/7Z.
Correct answer is 2 points

(b) [2 points] D25 ×Z/2Z is isomorphic D10 ×Z/5Z.

Solution: False. The dihedral group D25 has an element of order 25, namely the rotation
ρ25 by angle 2π/25. Therefore, (ρ25,0) ∈ D25 × Z/2Z has order 25. On the other hand the
order of the elements (a, b) in D10 ×Z/5Z is lcm(∣a∣, ∣b∣) = {1,2,5,10} so there is no element
of order 9. Therefore these two groups cannot be isomorphic.
Correct answer is 2 points

(c) [2 points] Let G be a group of order 34 and let H,K be subgroups of G such that H ⊂K ⊂ G
with H ≠K and K ≠ G. Then H is the trivial subgroup.

Solution: True. By Lagrange’s theorem, we have ∣H ∣ ∣ ∣K ∣ ∣ ∣G∣ and since ∣K ∣ ≠ ∣G∣, we have
∣K ∣ ∈ {1,2,17} but since 2 and 17 are primes and ∣H ∣ ≠ ∣K ∣, we have ∣H ∣ = 1. So it follows.
Correct answer is 2 points

GOOD LUCK! ,


